San Mateo Natural PEEK Rod

Many clients throughout the San Mateo area have heard the term vacuum forming, but they do not know what it really means, and they don’t know what it does or how it can help them in their business. Vacuum forming is a procedure that can shape performance plastic sheet materials into many different forms, and it is one of the best ways to make a host of different plastic products.

How Does it Work?

A type of thermoforming, vacuum forming, is a process by which a plastic sheet or thin sheet of plastic, such as a PVC sheet, is heated up so that it becomes malleable. The heating process includes the use of aluminum plates and infrared heaters. The heat application will come from the top and the bottom so that it is uniform and will provide the best results.

Once the heat finally reaches the proper temperature (which can differ based on the thickness of the sheets in use) the vacuum will mold the sheets to form the product. The vacuum is able to provide an airtight environment, which is going to be better for the overall molding process.

Products from Vacuum Forming

With this type of thermoforming, one could create countless types of products, and you may find that your company could benefit greatly from the process. One of the most common products using vacuum forming today are children’s plastic toys, but that’s just one of the possibilities. Product packaging is another option, and it is one most companies that create, manufacture, package and sell products could use. Most of the plastic items that you see around the home and office have gone through some type of thermoforming, and it’s often the vacuum process.

Radel R5500

San Mateo Best Plastic Sheet Supplier

Polycarbonate, otherwise known as its trademarked name, Lexan, is a group of thermoplastic polymers. They are used very much in the modern chemistry industry because they can be very easy worked and molded into different shapes and they can also be thermoformed. They show great capacities for temperature resistance, impact resistance as well as for optical properties. They are not grouped specifically into one position for their properties but are considered to be somewhere in between the engineering plastics and commodity plastics.

There are a number of advantages and disadvantages to polycarbonate if they indeed can be labeled as such. The advantages of this material of course are because of its properties. They are being used more for household products now than before because of the quality of goods that they can produce. Manufacturers are designing items not only for the household but for use in laboratories and in industry because of its resistance to temperatures and its ability to be easy shaped. Another advantage is the fact it can be injected into various objects which allows it to be used for discs, bottles, glasses, lenses, audio player cases, and lab equipment.

The unfortunate side to polycarbonate is that because of its chemical makeup and property, it is recommended only for those products that are used once, not repeatedly. Although it has other properties such as resilience and toughness, repeated use of the one object may be potentially hazardous to the health. This is due to the leaching of Bisphenol A which has been shown over time to cause the enlargement of the reproductive organs in female mice. It is also said to be responsible for neural and behavioral changes when given to younger animals. It is not certain how this relates to human life but because of the uncertainty, there are warnings concerning the repeated use of bottles and other products made with polycarbonate.

Sustason PPSU

Plastic Sheeting to Prevent Evaporation on Rivers and Water Storage Sources

The world is an ever changing and frequently hostile environment. Damage can be caused by a range of factors: from storms, floods and tornados to fires, hurricanes and earthquakes - all natural disasters.

This is certainly evident in the recent earthquakes and tsunami that ravaged Japan and Haiti. In addition, we have man made disasters. The nuclear concerns in Japan have captivated people's attention throughout the globe. The Gulf Oil Spill is an example of another environmental disaster. Plastic materials are the perfect choice in prevention, preparedness and clean up from natural disasters.

Plastics in disaster preparedness.

Many plastic materials are used in the prevention, control and repair management - whenever and wherever a natural disaster may occur.

One of the most visible plastics is the Polycarbonate used in hurricane window covers / shutters. Polycarbonate is a clear rigid plastic that has extremely high impact strength, and is the material most commonly known as 'Bullet Resistant Glazing'. It is used in safety glasses, riot shields and bank theft prevention glazing. The Polycarbonate protects windows and inhabitants from flying debris and breaking glass caused by the high winds, hurricanes and tornadoes. Use of the Polycarbonate window coverings saves homes from damage, and helps reduce insurance premiums.

Hillsides are affected by storms and heavy rains, causing mud slides. The standard and most popular solution is to cover hillsides with Polyethylene film. This helps to prevent the rains from saturating the ground and causing the ground to move or shift. The Poly film is normally.004" -.010" thick in widths up to 20 feet and lengths of 100 feet (the same material used as painters tarps from home improvement centers). This film is then attached to the hill with spikes, stakes or sand bags; and this material sheds the water rather than letting it soak in. It can be applied with folds and used like rain gutters to direct water flow away from specific areas. Also, the current sand bags used are not the old cotton fabric bags used years ago; they are now a high strength and tear resistant woven polypropylene 'fabric' bag.

The recent critical issues with nuclear leaks bring up an interesting use of a plastic material. As you may recall, after the earthquake and tsunami, the Japanese energy experts were pumping water and boron into the reactors to help control the amount of nuclear energy released. The nuclear industry uses a plastic material, High Density Polyethylene (HDPE) that has been filled with the natural mineral boron. This boron filled (typically a 5% boron fill) is used to shield neutrons and nuclear energy in many applications; nuclear submarines, nuclear power plants, hospital radiation, dental x-ray shielding and industrial radiation applications. It is normally produced in sheet, and can then be mounted in and around the radiation source as shielding. The benefit to using this boron filled HDPE is this sheet weighs significantly less than traditional lead shielding, and is therefore much easier to install.

Plastic used in clean up from disasters.

It is much more difficult to clean up after natural disasters occur. Many of the methods used in the preparation limit the amount of clean up caused by natural disasters.

Depending on the severity of the natural disaster, the uses of plastics in the aftermath are almost limitless. In the cleanup and rebuild after major Earthquakes, shelter is a key component. One of the quick shelters brought in are simple wooden frames with twin-wall plastic sheets made from either Polypropylene or Polycarbonate stapled or nailed to the framework. This provides an inexpensive, easily movable and effective shelter for short term housing. The twin-wall design provides excellent insulation and energy savings. This style shelter is foldable, easy to transport and very easy to set up. Several versions can be made from small huts to larger family areas, to separate sanitary latrine units. These extruded twin-wall materials work well to protect against rain and excessive exposure to the elements. These can be used as assembled, or with a sand bag reinforced perimeter. In Haiti, there were reports of residents filling used one gallon water bottles with mud, and building shelters with these mud building blocks.

The gulf oil spill brought plastics to the front line in disaster cleanup again. Materials used to collect and dispose of excess oil from the waters were rushed to the area. Polyethylene bags are used to collect the oil covered and saturated cleaning rags and clothes, preventing additional dispersion. Many varieties of machinery were brought in to clean the waters. One style machine uses 8" UHMW rod as a squeegee roller that grabs the oil from the water surface and then collects it for later use. Oil booms and rotary wheels are common systems for collecting oil from spills. Because plastics have great surface tension, the oil 'sticks' to the plastic surface during the cleaning process. Then the plastic surfaces are wiped clean for reuse and capturing the oil. Plastic tubes and hoses are used to move the oil after collection.

A significant use of plastics would be in the aftermath of natural disasters, specifically in the sanitation and clean water areas. First is sanitation; plastics are used in keeping items clean and dry. Polyethylene film covers items such as medical supplies, shelters, clothing and food cartons. This film keeps the items protected during shipment and ready for use.

Water is the second area of concern. Clean water is critical during the clean up and resettling after a natural disaster. Individual use water bottles are the quick and easy way to deliver water. Larger rotationally molded tanks are brought in with the ability to store large amounts of water in the areas affected. Reverse osmosis equipment (many components are made from plastic) is brought in to convert contaminated water in the clean potable water on site.

In all of these examples, plastic is lighter in weight than the alternatives, normally less expensive that the alternatives, it lasts longer and the plastics are recyclable.

Plastics are excellent choices for material to use in natural disasters.

San Mateo

Plastics In Natural Disasters


California Machine Grade Sheet Plastic

San Mateo Mechanical Plastics

Many clients throughout the San Mateo area have heard the term vacuum forming, but they do not know what it really means, and they don’t know what it does or how it can help them in their business. Vacuum forming is a procedure that can shape performance plastic sheet materials into many different forms, and it is one of the best ways to make a host of different plastic products.

How Does it Work?

A type of thermoforming, vacuum forming, is a process by which a plastic sheet or thin sheet of plastic, such as a PVC sheet, is heated up so that it becomes malleable. The heating process includes the use of aluminum plates and infrared heaters. The heat application will come from the top and the bottom so that it is uniform and will provide the best results.

Once the heat finally reaches the proper temperature (which can differ based on the thickness of the sheets in use) the vacuum will mold the sheets to form the product. The vacuum is able to provide an airtight environment, which is going to be better for the overall molding process.

Products from Vacuum Forming

With this type of thermoforming, one could create countless types of products, and you may find that your company could benefit greatly from the process. One of the most common products using vacuum forming today are children’s plastic toys, but that’s just one of the possibilities. Product packaging is another option, and it is one most companies that create, manufacture, package and sell products could use. Most of the plastic items that you see around the home and office have gone through some type of thermoforming, and it’s often the vacuum process.

TFE Sheets

San Mateo Best Plastic Sheet Supplier

The world is an ever changing and frequently hostile environment. Damage can be caused by a range of factors: from storms, floods and tornados to fires, hurricanes and earthquakes - all natural disasters.

This is certainly evident in the recent earthquakes and tsunami that ravaged Japan and Haiti. In addition, we have man made disasters. The nuclear concerns in Japan have captivated people's attention throughout the globe. The Gulf Oil Spill is an example of another environmental disaster. Plastic materials are the perfect choice in prevention, preparedness and clean up from natural disasters.

Plastics in disaster preparedness.

Many plastic materials are used in the prevention, control and repair management - whenever and wherever a natural disaster may occur.

One of the most visible plastics is the Polycarbonate used in hurricane window covers / shutters. Polycarbonate is a clear rigid plastic that has extremely high impact strength, and is the material most commonly known as 'Bullet Resistant Glazing'. It is used in safety glasses, riot shields and bank theft prevention glazing. The Polycarbonate protects windows and inhabitants from flying debris and breaking glass caused by the high winds, hurricanes and tornadoes. Use of the Polycarbonate window coverings saves homes from damage, and helps reduce insurance premiums.

Hillsides are affected by storms and heavy rains, causing mud slides. The standard and most popular solution is to cover hillsides with Polyethylene film. This helps to prevent the rains from saturating the ground and causing the ground to move or shift. The Poly film is normally.004" -.010" thick in widths up to 20 feet and lengths of 100 feet (the same material used as painters tarps from home improvement centers). This film is then attached to the hill with spikes, stakes or sand bags; and this material sheds the water rather than letting it soak in. It can be applied with folds and used like rain gutters to direct water flow away from specific areas. Also, the current sand bags used are not the old cotton fabric bags used years ago; they are now a high strength and tear resistant woven polypropylene 'fabric' bag.

The recent critical issues with nuclear leaks bring up an interesting use of a plastic material. As you may recall, after the earthquake and tsunami, the Japanese energy experts were pumping water and boron into the reactors to help control the amount of nuclear energy released. The nuclear industry uses a plastic material, High Density Polyethylene (HDPE) that has been filled with the natural mineral boron. This boron filled (typically a 5% boron fill) is used to shield neutrons and nuclear energy in many applications; nuclear submarines, nuclear power plants, hospital radiation, dental x-ray shielding and industrial radiation applications. It is normally produced in sheet, and can then be mounted in and around the radiation source as shielding. The benefit to using this boron filled HDPE is this sheet weighs significantly less than traditional lead shielding, and is therefore much easier to install.

Plastic used in clean up from disasters.

It is much more difficult to clean up after natural disasters occur. Many of the methods used in the preparation limit the amount of clean up caused by natural disasters.

Depending on the severity of the natural disaster, the uses of plastics in the aftermath are almost limitless. In the cleanup and rebuild after major Earthquakes, shelter is a key component. One of the quick shelters brought in are simple wooden frames with twin-wall plastic sheets made from either Polypropylene or Polycarbonate stapled or nailed to the framework. This provides an inexpensive, easily movable and effective shelter for short term housing. The twin-wall design provides excellent insulation and energy savings. This style shelter is foldable, easy to transport and very easy to set up. Several versions can be made from small huts to larger family areas, to separate sanitary latrine units. These extruded twin-wall materials work well to protect against rain and excessive exposure to the elements. These can be used as assembled, or with a sand bag reinforced perimeter. In Haiti, there were reports of residents filling used one gallon water bottles with mud, and building shelters with these mud building blocks.

The gulf oil spill brought plastics to the front line in disaster cleanup again. Materials used to collect and dispose of excess oil from the waters were rushed to the area. Polyethylene bags are used to collect the oil covered and saturated cleaning rags and clothes, preventing additional dispersion. Many varieties of machinery were brought in to clean the waters. One style machine uses 8" UHMW rod as a squeegee roller that grabs the oil from the water surface and then collects it for later use. Oil booms and rotary wheels are common systems for collecting oil from spills. Because plastics have great surface tension, the oil 'sticks' to the plastic surface during the cleaning process. Then the plastic surfaces are wiped clean for reuse and capturing the oil. Plastic tubes and hoses are used to move the oil after collection.

A significant use of plastics would be in the aftermath of natural disasters, specifically in the sanitation and clean water areas. First is sanitation; plastics are used in keeping items clean and dry. Polyethylene film covers items such as medical supplies, shelters, clothing and food cartons. This film keeps the items protected during shipment and ready for use.

Water is the second area of concern. Clean water is critical during the clean up and resettling after a natural disaster. Individual use water bottles are the quick and easy way to deliver water. Larger rotationally molded tanks are brought in with the ability to store large amounts of water in the areas affected. Reverse osmosis equipment (many components are made from plastic) is brought in to convert contaminated water in the clean potable water on site.

In all of these examples, plastic is lighter in weight than the alternatives, normally less expensive that the alternatives, it lasts longer and the plastics are recyclable.

Plastics are excellent choices for material to use in natural disasters.

Sustason PPSU

Aerospace Plastics For Aircraft Plastic Components

Plastic corrugated or corrugated plastic as it is commonly referred, is one of the main products used in the reusable packaging industry. Sure, there are other items in this packaging sector such as molded totes or heavy gauge thermoformed plastic trays, but nothing says returnable packaging quite like plastic corrugated. Virtually anything that is made of paper corrugated can be duplicated using corrugated plastic. These items include plastic corrugated boxes, stackable totes, corrugated plastic partitions and dunnage, as well as material handling carts and racks using this resilient material as a main component.

The following tips regarding plastic corrugated will help you think like packaging professional the next time a reusable packaging application crosses your desk.

1. Try different styles of plastic corrugated containers before purchasing a production quantity to make sure you have all of the features your project needs. The best catalog descriptions in the world are no substitute for testing corrugated plastic in real situations.

2. Test different thicknesses of plastic corrugated with your particular application. Corrugated plastic is available in thicknesses ranging from 2mm to 13mm. You may be able to save money by using thinner material.

3. Check to see if your supplier has stock sheets of plastic corrugated from which they can produce your corrugated plastic containers. This will result in a quicker lead time.

4. Compare prices between using a stock sheet of plastic corrugated which is then die cut to your container size and having custom run corrugated plastic sheets for your project. Custom run plastic corrugated sheet sizes should be more efficient for your supplier to run which will result in a lower price per container.

5. Consider applying a printed label instead of direct printing or silk screening on plastic corrugated. Labels on plastic corrugated can look just as nice, will last longer, and cost less than silk screening on corrugated plastic.

6. Ask if a utility or recycled grade of corrugated plastic is available. Utility plastic corrugated is less expensive than virgin material.

7. Evaluate the cost of running a small production run of plastic corrugated (less than 100 pieces) using sample making equipment instead of purchasing a die. There could be a significant price difference.

8. Consider having plastic corrugated partitions and dunnage rod locked so they don't come apart. Corrugated plastic dividers made this way are more stable and last longer.

9. Test plastic corrugated against your product to make sure it doesn't scratch. Plastic corrugated is generally non-abrasive but there are some products that are susceptible to scratching. For these applications use plastic corrugated lined with a non-abrasive coating such as spunbond fabric or even cross link foam.

10. Consider corrugated plastic for internal dunnage that traditionally has been done using wood, steel, or aluminum. Recent advances in plastic corrugated technology allow it to be nailed, screwed, and bolted which results in reusable packaging that is incredibly strong yet lightweight.

In closing, these tips should help the novice as well as the seasoned veteran find alternatives to paper packaging while reducing their cost. In this day and age of pressure for cost reductions, plastic corrugated returnable packaging solutions can help any company improve their bottom line.

San Mateo

What Plastic Materials Are UV Stable?


California Machine Grade Sheet Plastic