Valmy Machine Grade Plastic

Many clients throughout the Valmy area have heard the term vacuum forming, but they do not know what it really means, and they don’t know what it does or how it can help them in their business. Vacuum forming is a procedure that can shape performance plastic sheet materials into many different forms, and it is one of the best ways to make a host of different plastic products.

How Does it Work?

A type of thermoforming, vacuum forming, is a process by which a plastic sheet or thin sheet of plastic, such as a PVC sheet, is heated up so that it becomes malleable. The heating process includes the use of aluminum plates and infrared heaters. The heat application will come from the top and the bottom so that it is uniform and will provide the best results.

Once the heat finally reaches the proper temperature (which can differ based on the thickness of the sheets in use) the vacuum will mold the sheets to form the product. The vacuum is able to provide an airtight environment, which is going to be better for the overall molding process.

Products from Vacuum Forming

With this type of thermoforming, one could create countless types of products, and you may find that your company could benefit greatly from the process. One of the most common products using vacuum forming today are children’s plastic toys, but that’s just one of the possibilities. Product packaging is another option, and it is one most companies that create, manufacture, package and sell products could use. Most of the plastic items that you see around the home and office have gone through some type of thermoforming, and it’s often the vacuum process.

Sanatec Cutting Board

Valmy Best Plastic Sheet Supplier

We use many products with little to no regard as to how they came to be. One such product is called polystyrene. This is a type of polymer plastic that is used in manufacturing, construction, and for household items that we use everyday. Polystyrene sheets can be molded to specific shapes and sizes and are used in a variety of ways. It can be made into all different types of colors, but is most commonly found to be white or clear.

In manufacturing and construction, polystyrene sheets are used as a packing material. Think of the box your fragile electronics come in. There is usually that hard foam surrounding your purchase, protecting it from bumps and drops, right? This is an insulator formed from expanded polystyrene sheets. In construction, polystyrene sheets are used as molds for concrete or other building materials. They are also used as a form of insulation.

When thinking of it's household uses, you can bet that polystyrene sheets are used in ways that you would never believe! Those little Styrofoam cups we drink from are made from that product. The yogurt you may have eaten for lunch was put into a cup made from it too! Polystyrene is used to make CD and DVD cases, molded to form the handles for disposable razors, and used in many toys that your children may have. It is also a popular product used in many craft materials.

So, why is this stuff so great? For a lot of reasons!

It is lightweight and very easy to work with.
It can be molded into virtually any shape or size, come in large and small sheets or blocks, and can fit easily into a box.
It is a good insulator, protecting objects from water and water vapor, as well as fungus and mildew.
It protects fragile objects from drops, bumps and scratches that may otherwise cause damage.
Polystyrene sheets are available for purchase in many home improvement stores for personal use. You can cut them to the size you need quite easily, or they may be able to cut them at the store, just ask the salesperson if they offer the service. For large quantities used for more commercial purposes, companies on the Internet will be able to fill your order to your exact specifications.

Natural Acetal Sheet

Plastics In Natural Disasters

The world is an ever changing and frequently hostile environment. Damage can be caused by a range of factors: from storms, floods and tornados to fires, hurricanes and earthquakes - all natural disasters.

This is certainly evident in the recent earthquakes and tsunami that ravaged Japan and Haiti. In addition, we have man made disasters. The nuclear concerns in Japan have captivated people's attention throughout the globe. The Gulf Oil Spill is an example of another environmental disaster. Plastic materials are the perfect choice in prevention, preparedness and clean up from natural disasters.

Plastics in disaster preparedness.

Many plastic materials are used in the prevention, control and repair management - whenever and wherever a natural disaster may occur.

One of the most visible plastics is the Polycarbonate used in hurricane window covers / shutters. Polycarbonate is a clear rigid plastic that has extremely high impact strength, and is the material most commonly known as 'Bullet Resistant Glazing'. It is used in safety glasses, riot shields and bank theft prevention glazing. The Polycarbonate protects windows and inhabitants from flying debris and breaking glass caused by the high winds, hurricanes and tornadoes. Use of the Polycarbonate window coverings saves homes from damage, and helps reduce insurance premiums.

Hillsides are affected by storms and heavy rains, causing mud slides. The standard and most popular solution is to cover hillsides with Polyethylene film. This helps to prevent the rains from saturating the ground and causing the ground to move or shift. The Poly film is normally.004" -.010" thick in widths up to 20 feet and lengths of 100 feet (the same material used as painters tarps from home improvement centers). This film is then attached to the hill with spikes, stakes or sand bags; and this material sheds the water rather than letting it soak in. It can be applied with folds and used like rain gutters to direct water flow away from specific areas. Also, the current sand bags used are not the old cotton fabric bags used years ago; they are now a high strength and tear resistant woven polypropylene 'fabric' bag.

The recent critical issues with nuclear leaks bring up an interesting use of a plastic material. As you may recall, after the earthquake and tsunami, the Japanese energy experts were pumping water and boron into the reactors to help control the amount of nuclear energy released. The nuclear industry uses a plastic material, High Density Polyethylene (HDPE) that has been filled with the natural mineral boron. This boron filled (typically a 5% boron fill) is used to shield neutrons and nuclear energy in many applications; nuclear submarines, nuclear power plants, hospital radiation, dental x-ray shielding and industrial radiation applications. It is normally produced in sheet, and can then be mounted in and around the radiation source as shielding. The benefit to using this boron filled HDPE is this sheet weighs significantly less than traditional lead shielding, and is therefore much easier to install.

Plastic used in clean up from disasters.

It is much more difficult to clean up after natural disasters occur. Many of the methods used in the preparation limit the amount of clean up caused by natural disasters.

Depending on the severity of the natural disaster, the uses of plastics in the aftermath are almost limitless. In the cleanup and rebuild after major Earthquakes, shelter is a key component. One of the quick shelters brought in are simple wooden frames with twin-wall plastic sheets made from either Polypropylene or Polycarbonate stapled or nailed to the framework. This provides an inexpensive, easily movable and effective shelter for short term housing. The twin-wall design provides excellent insulation and energy savings. This style shelter is foldable, easy to transport and very easy to set up. Several versions can be made from small huts to larger family areas, to separate sanitary latrine units. These extruded twin-wall materials work well to protect against rain and excessive exposure to the elements. These can be used as assembled, or with a sand bag reinforced perimeter. In Haiti, there were reports of residents filling used one gallon water bottles with mud, and building shelters with these mud building blocks.

The gulf oil spill brought plastics to the front line in disaster cleanup again. Materials used to collect and dispose of excess oil from the waters were rushed to the area. Polyethylene bags are used to collect the oil covered and saturated cleaning rags and clothes, preventing additional dispersion. Many varieties of machinery were brought in to clean the waters. One style machine uses 8" UHMW rod as a squeegee roller that grabs the oil from the water surface and then collects it for later use. Oil booms and rotary wheels are common systems for collecting oil from spills. Because plastics have great surface tension, the oil 'sticks' to the plastic surface during the cleaning process. Then the plastic surfaces are wiped clean for reuse and capturing the oil. Plastic tubes and hoses are used to move the oil after collection.

A significant use of plastics would be in the aftermath of natural disasters, specifically in the sanitation and clean water areas. First is sanitation; plastics are used in keeping items clean and dry. Polyethylene film covers items such as medical supplies, shelters, clothing and food cartons. This film keeps the items protected during shipment and ready for use.

Water is the second area of concern. Clean water is critical during the clean up and resettling after a natural disaster. Individual use water bottles are the quick and easy way to deliver water. Larger rotationally molded tanks are brought in with the ability to store large amounts of water in the areas affected. Reverse osmosis equipment (many components are made from plastic) is brought in to convert contaminated water in the clean potable water on site.

In all of these examples, plastic is lighter in weight than the alternatives, normally less expensive that the alternatives, it lasts longer and the plastics are recyclable.

Plastics are excellent choices for material to use in natural disasters.

Valmy

Acrylic, Melamine and Tritan, Oh, My! Five Tips to Help You Find the Perfect Plastic Tableware


Nevada Engineering Plastic Sheet

Valmy Mechanical Plastic Sheets

Many clients throughout the Valmy area have heard the term vacuum forming, but they do not know what it really means, and they don’t know what it does or how it can help them in their business. Vacuum forming is a procedure that can shape performance plastic sheet materials into many different forms, and it is one of the best ways to make a host of different plastic products.

How Does it Work?

A type of thermoforming, vacuum forming, is a process by which a plastic sheet or thin sheet of plastic, such as a PVC sheet, is heated up so that it becomes malleable. The heating process includes the use of aluminum plates and infrared heaters. The heat application will come from the top and the bottom so that it is uniform and will provide the best results.

Once the heat finally reaches the proper temperature (which can differ based on the thickness of the sheets in use) the vacuum will mold the sheets to form the product. The vacuum is able to provide an airtight environment, which is going to be better for the overall molding process.

Products from Vacuum Forming

With this type of thermoforming, one could create countless types of products, and you may find that your company could benefit greatly from the process. One of the most common products using vacuum forming today are children’s plastic toys, but that’s just one of the possibilities. Product packaging is another option, and it is one most companies that create, manufacture, package and sell products could use. Most of the plastic items that you see around the home and office have gone through some type of thermoforming, and it’s often the vacuum process.

Thermalux Sheet

Valmy Best Plastic Sheet Supplier

Plastics cover a broad field of organic synthetic resin and may be divided into two main classifications - aerospace thermoplastics _ and aerospace thermosetting plastics. Thermoplastics may be softened by heat and can be dissolved in various organic solvents.

Aerospace Thermoplastics.

Thermoplastics may be softened by heat and can be dissolved in various organic solvents. Two kinds of transparent thermoplastic materials are commonly employed in windows, canopies, etc. These are known as acrylic plastics and cellulose acetate plastics. Cellulose acetate was used in the past but since it is dimensionally unstable and turns yellow after it has been installed for a time, it has just about passed from the scene and is not considered an acceptable substitute for acrylic. Acrylic plastics are known by the trade names of Lucite or Plexiglas and by the British as Perspex and meet the military specifications of MIL-P-5425 for regular acrylic, MIL-P-8184 -~ 184 for craze-resistant acrylic.

Aerospace Thermosetting Plastics.

Thermosetting plastics do not soften appreciably under heat but may char and blister at temperatures of 240 to 260 'C (400 to 500 °F). Most of the moulded products of synthetic resin composition, such as phenolic, urea-formaldehyde, and melamine formaldehyde resins, belong to the thermosetting group. Once the plastic becomes hard, additional heat will not change it back into a liquid as it would with a thermoplastic.

Storage and handling.

Because transparent thermoplastic sheets soften and deform when they are heated, they must be where the temperature will never be excessive.

Aerospace thermoforming.

Transparent acrylic plastics get soft and pliable when they are heated to their forming temperatures and can be formed to almost any shape. When they cool, they retain the shape to which they were formed. Acrylic plastic may be cold-bent into a single curvature if the material is thin and the bending radius is at least 180 times the thickness of the sheet. Cold bending beyond these limits will impose so much stress on the surface of the plastic that tiny fissures or cracks, called crazing, will form.

Forming methods.

Simple Curve Forming. Heat the plastic material to the recommended temperature, remove it from the heat source, and carefully drape it over the prepared form. Carefully press the hot plastic to the form and either hold or clamp the sheet in place until it cools. This process may take from ten minutes to one-half hour. Do not force-cool it.

Compound-Curve Forming.

This type of forming is normally used for such parts as canopies or complex wingtip light covers, and it requires a great deal of specialized equipment. There are four commonly used methods, each having its advantages and disadvantages.

Stretch forming. Preheated acrylic sheets are stretched mechanically over the form in much the same way as is done with the simple curved piece. Special care must be taken to preserve uniform thickness of the material, since some parts will have to stretch more than others.

Male And Female Die Forming. This requires expensive matching male and female dies. The heated plastic sheet is placed between the dies which are then mated. When the plastic cools, the dies are opened.

Aerospace Vacuum Forming Without Forms. Many aircraft canopies are formed by this method. In this process a clamp with an opening of the desired shape is placed over a vacuum box and the heated sheet of plastic is clamped in place. When the air in the box is evacuated, the outside air pressure will force the hot plastic through the opening and form the concave canopy. It is the surface tension of the plastic that shapes the canopy.

Aerospace Vacuum Forming With A Female Form. If the shape needed is other than that which would be formed by surface tension, a female mould, or form must be used. It is placed below the plastic sheet and the vacuum pump is connected. When air from the form is evacuated, the outside air pressure will force the hot plastic sheet into the mould and fill it.

Thermalux Sheet

Plastic Sheeting to Prevent Evaporation on Rivers and Water Storage Sources

Some of our most popular questions are "Is this material UV stable?", or "How long will this last in direct sunlight?", or some similar themed question. These are great questions. Just look at the 'cheap' backyard furniture you bought last season, yep, it is faded and cracking or broken. Why is that?

The quick answer is the material had either no UV (Ultra Violet Light) stabilizer or very little - or it was simply the wrong plastic for the part. Most plastic materials are not UV stable to start with, other than Acrylic which is invisible to UV. All other materials need a little something (an additive) to give it the protection it may need from the sun. Many plastic materials, if given the proper UV resistant additives, can be used in direct sunlight for 10 - 15 years, or more, providing excellent performance in harsh environments.

The first factor in picking such a material is the intended use. Not all materials are good choices for all applications. While some materials will perform exceptionally well, others plastic materials under the same conditions will fail. Many plastic materials are not well suited to: high temperatures, chemical exposure, UV light, high impact, or electrical applications. Please contact us for details on a material that may meet your needs.

HDPE sheet is one of the best materials for long term outdoor use, if given the proper additives (without UV inhibitors it will fade and crack quickly). Next time you drive by a children's playground in your local city, look at the brightly colored panels used to make the play equipment. This is a HDPE sheet with heavy UV additives, and this makes an excellent application. Available in a rainbow of colors and able to be fabricated easily, this material is excellent for many outdoor applications.

If your application is more mechanical, other materials that might be used would be: Polycarbonate, UHMW, ABS (especially with Korad - Acrylic cover), Acetal, Noryl and many more.

Our standard Makrolon Polycarbonate is a UV stable material in sheet, and is frequently used in replacement glazing applications. The remaining materials on the list are available in Black (a carbon black pigment) which extends outdoor usage. While still not recommended for direct sunlight, they can be used with a good possibility of success - depending on design. Plastics can become brittle or lose properties over time if material does not have UV stabilization, with the proper material and the proper additives, you can get years of trouble free service.

Additionally, many materials will work well if they are painted to cover the plastic surface. Many spray paints, especially Acrylic paints, last many years in the sun. Please check with us, as some material do not accept paints or coatings.

Take some time to review your requirements, and the properties of the plastic you intend to use. The right material will provide the best performance. Contact any of our Plasticologists for assistance, call 866-832-9315 or email us. You can always do research on plastic materials at Industrial Plastic Supply.

Valmy

What Plastic Materials Are UV Stable?


Nevada Engineering Plastic Sheet