Sloan Mechanical Plastic Sheets

Many clients throughout the Sloan area have heard the term vacuum forming, but they do not know what it really means, and they don’t know what it does or how it can help them in their business. Vacuum forming is a procedure that can shape performance plastic sheet materials into many different forms, and it is one of the best ways to make a host of different plastic products.

How Does it Work?

A type of thermoforming, vacuum forming, is a process by which a plastic sheet or thin sheet of plastic, such as a PVC sheet, is heated up so that it becomes malleable. The heating process includes the use of aluminum plates and infrared heaters. The heat application will come from the top and the bottom so that it is uniform and will provide the best results.

Once the heat finally reaches the proper temperature (which can differ based on the thickness of the sheets in use) the vacuum will mold the sheets to form the product. The vacuum is able to provide an airtight environment, which is going to be better for the overall molding process.

Products from Vacuum Forming

With this type of thermoforming, one could create countless types of products, and you may find that your company could benefit greatly from the process. One of the most common products using vacuum forming today are children’s plastic toys, but that’s just one of the possibilities. Product packaging is another option, and it is one most companies that create, manufacture, package and sell products could use. Most of the plastic items that you see around the home and office have gone through some type of thermoforming, and it’s often the vacuum process.

Unitem PEI Sheet

Sloan Best Plastic Sheet Supplier

Polycarbonate, otherwise known as its trademarked name, Lexan, is a group of thermoplastic polymers. They are used very much in the modern chemistry industry because they can be very easy worked and molded into different shapes and they can also be thermoformed. They show great capacities for temperature resistance, impact resistance as well as for optical properties. They are not grouped specifically into one position for their properties but are considered to be somewhere in between the engineering plastics and commodity plastics.

There are a number of advantages and disadvantages to polycarbonate if they indeed can be labeled as such. The advantages of this material of course are because of its properties. They are being used more for household products now than before because of the quality of goods that they can produce. Manufacturers are designing items not only for the household but for use in laboratories and in industry because of its resistance to temperatures and its ability to be easy shaped. Another advantage is the fact it can be injected into various objects which allows it to be used for discs, bottles, glasses, lenses, audio player cases, and lab equipment.

The unfortunate side to polycarbonate is that because of its chemical makeup and property, it is recommended only for those products that are used once, not repeatedly. Although it has other properties such as resilience and toughness, repeated use of the one object may be potentially hazardous to the health. This is due to the leaching of Bisphenol A which has been shown over time to cause the enlargement of the reproductive organs in female mice. It is also said to be responsible for neural and behavioral changes when given to younger animals. It is not certain how this relates to human life but because of the uncertainty, there are warnings concerning the repeated use of bottles and other products made with polycarbonate.

LubX C UHMW Sheet

Acrylic, Melamine and Tritan, Oh, My! Five Tips to Help You Find the Perfect Plastic Tableware

Plastics cover a broad field of organic synthetic resin and may be divided into two main classifications - aerospace thermoplastics _ and aerospace thermosetting plastics. Thermoplastics may be softened by heat and can be dissolved in various organic solvents.

Aerospace Thermoplastics.

Thermoplastics may be softened by heat and can be dissolved in various organic solvents. Two kinds of transparent thermoplastic materials are commonly employed in windows, canopies, etc. These are known as acrylic plastics and cellulose acetate plastics. Cellulose acetate was used in the past but since it is dimensionally unstable and turns yellow after it has been installed for a time, it has just about passed from the scene and is not considered an acceptable substitute for acrylic. Acrylic plastics are known by the trade names of Lucite or Plexiglas and by the British as Perspex and meet the military specifications of MIL-P-5425 for regular acrylic, MIL-P-8184 -~ 184 for craze-resistant acrylic.

Aerospace Thermosetting Plastics.

Thermosetting plastics do not soften appreciably under heat but may char and blister at temperatures of 240 to 260 'C (400 to 500 °F). Most of the moulded products of synthetic resin composition, such as phenolic, urea-formaldehyde, and melamine formaldehyde resins, belong to the thermosetting group. Once the plastic becomes hard, additional heat will not change it back into a liquid as it would with a thermoplastic.

Storage and handling.

Because transparent thermoplastic sheets soften and deform when they are heated, they must be where the temperature will never be excessive.

Aerospace thermoforming.

Transparent acrylic plastics get soft and pliable when they are heated to their forming temperatures and can be formed to almost any shape. When they cool, they retain the shape to which they were formed. Acrylic plastic may be cold-bent into a single curvature if the material is thin and the bending radius is at least 180 times the thickness of the sheet. Cold bending beyond these limits will impose so much stress on the surface of the plastic that tiny fissures or cracks, called crazing, will form.

Forming methods.

Simple Curve Forming. Heat the plastic material to the recommended temperature, remove it from the heat source, and carefully drape it over the prepared form. Carefully press the hot plastic to the form and either hold or clamp the sheet in place until it cools. This process may take from ten minutes to one-half hour. Do not force-cool it.

Compound-Curve Forming.

This type of forming is normally used for such parts as canopies or complex wingtip light covers, and it requires a great deal of specialized equipment. There are four commonly used methods, each having its advantages and disadvantages.

Stretch forming. Preheated acrylic sheets are stretched mechanically over the form in much the same way as is done with the simple curved piece. Special care must be taken to preserve uniform thickness of the material, since some parts will have to stretch more than others.

Male And Female Die Forming. This requires expensive matching male and female dies. The heated plastic sheet is placed between the dies which are then mated. When the plastic cools, the dies are opened.

Aerospace Vacuum Forming Without Forms. Many aircraft canopies are formed by this method. In this process a clamp with an opening of the desired shape is placed over a vacuum box and the heated sheet of plastic is clamped in place. When the air in the box is evacuated, the outside air pressure will force the hot plastic through the opening and form the concave canopy. It is the surface tension of the plastic that shapes the canopy.

Aerospace Vacuum Forming With A Female Form. If the shape needed is other than that which would be formed by surface tension, a female mould, or form must be used. It is placed below the plastic sheet and the vacuum pump is connected. When air from the form is evacuated, the outside air pressure will force the hot plastic sheet into the mould and fill it.

Sloan

The Advantages And Disadvantages Of Polycarbonate


Nevada Engineering Plastic Sheet

Sloan Machine Grade Plastic

Many clients throughout the Sloan area have heard the term vacuum forming, but they do not know what it really means, and they don’t know what it does or how it can help them in their business. Vacuum forming is a procedure that can shape performance plastic sheet materials into many different forms, and it is one of the best ways to make a host of different plastic products.

How Does it Work?

A type of thermoforming, vacuum forming, is a process by which a plastic sheet or thin sheet of plastic, such as a PVC sheet, is heated up so that it becomes malleable. The heating process includes the use of aluminum plates and infrared heaters. The heat application will come from the top and the bottom so that it is uniform and will provide the best results.

Once the heat finally reaches the proper temperature (which can differ based on the thickness of the sheets in use) the vacuum will mold the sheets to form the product. The vacuum is able to provide an airtight environment, which is going to be better for the overall molding process.

Products from Vacuum Forming

With this type of thermoforming, one could create countless types of products, and you may find that your company could benefit greatly from the process. One of the most common products using vacuum forming today are children’s plastic toys, but that’s just one of the possibilities. Product packaging is another option, and it is one most companies that create, manufacture, package and sell products could use. Most of the plastic items that you see around the home and office have gone through some type of thermoforming, and it’s often the vacuum process.

Victrex G45

Sloan Best Plastic Sheet Supplier

Decorative concrete has become a very popular new flooring choice for both residential and commercial construction projects. They are easy to maintain, great for regions with a lot of sand or snow, and a good alternative to carpeting if the homeowner has allergies. Decorative concrete flooring is often installed in a new home early in the construction process, which can result in damage from paint splatters, grime from workboats, impact from falling materials, and wheeled traffic. How do you help safeguard these freshly polished floors from construction traffic and mishaps from dropped tools and building materials?

There are several different types of surface protection that protect newly-installed decorative concrete floors from damage. Many contractors use Masonite, sheet plastic, and slick films to try to protect concrete flooring. These items offer limited protection and have serious limitations. Products like plywood can scratch flooring and are typically heavy and difficult to store after use. Masonite is bulky and can't easily be repositioned on a job site. Occasionally, the masonite 4' x 8' sheets separate and allow wheeled traffic to directly roll over the new floor. Also, Masonite is not absorbent, so liquids flow off the sides and get into spaces between sheets, damaging the decorative concrete. Sheet plastic has its own set of challenges. While it is easier to move around a job site and is less expensive than other floor protection options, it can be very slippery on top of polished concrete flooring and may lead to worker injuries if someone falls or trips. Plastic sheeting moves easily, which means that without being taped down, it could slide on the floor. Lastly, sheet plastic offers no impact protection from dropped heavy items. Another option that contractors use to protect decorative concrete floors that doesn't work well are temporary carpets. The carpets have a rubber backing, which does not allow the concrete to breathe. While it makes for good protection against impacts, it is heavy and awkward to move and does not absorb spills well at all. It is also a very expensive type of protection.

Many builders have tried each of these methods to protect decorative concrete but nothing works perfectly. The ideal product would be breathable so that concrete can cure, absorb spills, prevent differential drying, and would provide impact protection. If possible, the product would be reusable and recyclable to reduce waste. Luckily, there are several surface protection products on the market that meet all of these requirements.

Ram Board™ is a heavy-duty floor protection product that is made of a thick cardboard-like material. One roll of Ram Board™ is the same thickness of ten sheets of Masonite, and since it comes in rolls, it is much easier to transport, move around, and store. It lays fast and flat upon being unrolled and allows moisture to escape for curing floors. Ram Board™ is water-resistant and prevents oils and other materials from seeping through and staining concrete flooring. Ram Board's breathable Vapor Cure™ tape can be used to tape ram board sheets together and does not result in cure lines.

SurfacePro™ is a thick, breathable floor protection product that has a skid-resistant backing. It comes in large rolls and easily cuts to size. SurfacePro™ is reusable and provides 40 mils of protection for decorative concrete floors. The breathable product prevents cure lines in newly-installed concrete and it won't invalidate the flooring manufacturer's warranty. Unlike the paper Ramboard, Surface Pro is reusable and last longer.

SurfaceLiner Vapor™ is a new product that is similar to SurfacePro™, but also has a lightly tacky back that almost acts like an adhesive. It lightly grips floors without leaving any sort of residue. SurfaceLiner Vapor™ is breathable and vapor-transmitting for new concrete floors. It is also waterproof and tear-resistant. SurfaceLiner Vapor™ has padded protection that is very effective against impact damage.

,EZcover by McTech Group is a natural cellulose fiber composite that immediately starts absorbing a spill without degrading. It has a dense top layer and a soft cushion on the bottom and is designed to take impacts. EZcover breathes well, is relatively easy to cut/shape around objects, and comes in large rolls for easy placement over large areas. If kept in decent condition, EZcover is reusable. It is its durable against construction traffic and wheeled traffic and the edges can be taped if needed.

While contractors can use basic products such as sheet plastic, Masonite, and carpeting to protect decorative concrete floors, the most effective types of protection are specialized floor protection products. Products such as Ram Board™, Surface Pro™, SurfaceLiner Vapor™, and EZcover are specifically designed to provide the very best protection at a competitive price. Remember; protection is an investment and prevents the high costs of replacement or repair that may happen if the expensive flooring is not protected. Contact your local surface protection supplier for more information how to best protect your valuable concrete floors.

TECA PEI

Plastics In Natural Disasters

The world is an ever changing and frequently hostile environment. Damage can be caused by a range of factors: from storms, floods and tornados to fires, hurricanes and earthquakes - all natural disasters.

This is certainly evident in the recent earthquakes and tsunami that ravaged Japan and Haiti. In addition, we have man made disasters. The nuclear concerns in Japan have captivated people's attention throughout the globe. The Gulf Oil Spill is an example of another environmental disaster. Plastic materials are the perfect choice in prevention, preparedness and clean up from natural disasters.

Plastics in disaster preparedness.

Many plastic materials are used in the prevention, control and repair management - whenever and wherever a natural disaster may occur.

One of the most visible plastics is the Polycarbonate used in hurricane window covers / shutters. Polycarbonate is a clear rigid plastic that has extremely high impact strength, and is the material most commonly known as 'Bullet Resistant Glazing'. It is used in safety glasses, riot shields and bank theft prevention glazing. The Polycarbonate protects windows and inhabitants from flying debris and breaking glass caused by the high winds, hurricanes and tornadoes. Use of the Polycarbonate window coverings saves homes from damage, and helps reduce insurance premiums.

Hillsides are affected by storms and heavy rains, causing mud slides. The standard and most popular solution is to cover hillsides with Polyethylene film. This helps to prevent the rains from saturating the ground and causing the ground to move or shift. The Poly film is normally.004" -.010" thick in widths up to 20 feet and lengths of 100 feet (the same material used as painters tarps from home improvement centers). This film is then attached to the hill with spikes, stakes or sand bags; and this material sheds the water rather than letting it soak in. It can be applied with folds and used like rain gutters to direct water flow away from specific areas. Also, the current sand bags used are not the old cotton fabric bags used years ago; they are now a high strength and tear resistant woven polypropylene 'fabric' bag.

The recent critical issues with nuclear leaks bring up an interesting use of a plastic material. As you may recall, after the earthquake and tsunami, the Japanese energy experts were pumping water and boron into the reactors to help control the amount of nuclear energy released. The nuclear industry uses a plastic material, High Density Polyethylene (HDPE) that has been filled with the natural mineral boron. This boron filled (typically a 5% boron fill) is used to shield neutrons and nuclear energy in many applications; nuclear submarines, nuclear power plants, hospital radiation, dental x-ray shielding and industrial radiation applications. It is normally produced in sheet, and can then be mounted in and around the radiation source as shielding. The benefit to using this boron filled HDPE is this sheet weighs significantly less than traditional lead shielding, and is therefore much easier to install.

Plastic used in clean up from disasters.

It is much more difficult to clean up after natural disasters occur. Many of the methods used in the preparation limit the amount of clean up caused by natural disasters.

Depending on the severity of the natural disaster, the uses of plastics in the aftermath are almost limitless. In the cleanup and rebuild after major Earthquakes, shelter is a key component. One of the quick shelters brought in are simple wooden frames with twin-wall plastic sheets made from either Polypropylene or Polycarbonate stapled or nailed to the framework. This provides an inexpensive, easily movable and effective shelter for short term housing. The twin-wall design provides excellent insulation and energy savings. This style shelter is foldable, easy to transport and very easy to set up. Several versions can be made from small huts to larger family areas, to separate sanitary latrine units. These extruded twin-wall materials work well to protect against rain and excessive exposure to the elements. These can be used as assembled, or with a sand bag reinforced perimeter. In Haiti, there were reports of residents filling used one gallon water bottles with mud, and building shelters with these mud building blocks.

The gulf oil spill brought plastics to the front line in disaster cleanup again. Materials used to collect and dispose of excess oil from the waters were rushed to the area. Polyethylene bags are used to collect the oil covered and saturated cleaning rags and clothes, preventing additional dispersion. Many varieties of machinery were brought in to clean the waters. One style machine uses 8" UHMW rod as a squeegee roller that grabs the oil from the water surface and then collects it for later use. Oil booms and rotary wheels are common systems for collecting oil from spills. Because plastics have great surface tension, the oil 'sticks' to the plastic surface during the cleaning process. Then the plastic surfaces are wiped clean for reuse and capturing the oil. Plastic tubes and hoses are used to move the oil after collection.

A significant use of plastics would be in the aftermath of natural disasters, specifically in the sanitation and clean water areas. First is sanitation; plastics are used in keeping items clean and dry. Polyethylene film covers items such as medical supplies, shelters, clothing and food cartons. This film keeps the items protected during shipment and ready for use.

Water is the second area of concern. Clean water is critical during the clean up and resettling after a natural disaster. Individual use water bottles are the quick and easy way to deliver water. Larger rotationally molded tanks are brought in with the ability to store large amounts of water in the areas affected. Reverse osmosis equipment (many components are made from plastic) is brought in to convert contaminated water in the clean potable water on site.

In all of these examples, plastic is lighter in weight than the alternatives, normally less expensive that the alternatives, it lasts longer and the plastics are recyclable.

Plastics are excellent choices for material to use in natural disasters.

Sloan

Plastics In Natural Disasters


Nevada Engineering Plastic Sheet